Categorieën
Natuurkunde

Podcast Splijtstof belicht alle kanten van kernenenergie

Als je iets over kernenergie leest of hoort, is de kans vrij groot dat je ofwel alleen de argumenten krijgt van een fervent voorstander, ofwel van iemand die mordicus tegen deze vorm van energieopwekking is. Jammer, want hoewel je lang niet over elk onderwerp een enerzijds-anderzijds-verhaal moet willen ophangen, ligt de waarheid in dit geval écht ergens in het midden. Of het nu over de kosten, het afval of de risico’s van straling gaat: over elk aspect van kerncentrales is meer te zeggen dan zowel voor- als tegenstanders hun toehoorders willen doen geloven. Gelukkig is er nu Splijtstof, een achtdelige podcast waarin wetenschapsjournalist Diederik Jekel en cultuurwetenschapper Daan Nieber niet voor of tegen meer kerncentrales pleiten, maar vooral alle kanten van de kwestie belichten.

Lees de hele recensie op de site van New Scientist. De podcast zelf vind je hier.

Categorieën
Natuurkunde

Waarom verdwijnen mysterieuze deeltjesresultaten?

Niets kan sneller dan het licht. Als je binnen de natuurkunde ergens van op aan kan, is het wel die wetmatigheid, zou je zeggen – met dank aan Albert Einsteins speciale relativiteitstheorie.

Toch leken in het najaar van 2011 extreem lichte deeltjes genaamd neutrino’s deze vertrouwde regel aan hun laars te lappen. Die waren van het Europese deeltjeslab CERN bij Genève naar het experiment OPERA in Italië gereisd in net iets minder tijd dan een lichtstraal daarover zou hebben gedaan.

Categorieën
Natuurkunde Overige wetenschap Sterrenkunde

Dysonbollen en metamaterialen

Voor het huidige nummer van KIJK (10/2024) schreef ik de rubriek ‘In 5 minuten…’ over CERN. Aanleiding was het zeventigjarig jubileum van het Europese deeltjeslab, op 29 september. (Gefeliciteerd nog, CERN.)

Cover KIJK 10/2024

Natuurlijk bevat het nummer ook weer een aflevering in mijn reeks ‘Far Out’. Het onderwerp: twee recente zoektochten naar zogenoemde Dyson spheres. Oftewel: gigantische schillen rond sterren, gebouwd door geavanceerde buitenaardse beschavingen, die zoveel mogelijk van het uitgezonden licht moeten opvangen.

Categorieën
Natuurkunde

Uitstel ITER minder dramatisch dan het lijkt

Dat was even slikken voor de kernfusievoorstanders en even gniffelen voor de sceptici: de internationale reactor ITER, die al decennialang wordt geplaagd door vertragingen en kostenoverschrijdingen, krijgt te maken met nóg meer uitstel. Niet in 2025, maar in 2034 zal daar voor het eerst een plasma in worden gebracht. Een flinke tegenvaller natuurlijk – maar de nieuwe ITER-vertraging is ook weer minder onverwacht en ernstig dan-ie lijkt.

Voor New Scientist schreef ik een opiniestuk waarin ik het uitstel van de experimentele fusiereactor ITER, in aanbouw in Zuid-Frankrijk, in perspectief plaats. Lees het hier (achter de betaalmuur) of in het net verschenen nieuwe nummer. Meer weten over kernfusie? Schaf mijn boekje De fusiedroom aan.

Politiek plasma

Het ITER-uitstel kwam trouwens al ter sprake in mijn dubbelinterview voor Trouw met de vertrekkende en aankomende directeur van EUROfusion, de organisatie die het Europese fusieonderzoek coördineert. Toen schreef ik:

Inmiddels is duidelijk dat ook [de deadline van 2025] niet wordt gehaald. Wanneer ITER dan wel met zijn eerste experimenten kan beginnen? Waarschijnlijk wordt het nieuwe streefjaar dit voorjaar bekendgemaakt, zeggen Fasoli en Donné. Maar feit is dus dat de reactor waar Gorbatsjov en Reagan midden in de Koude Oorlog al van droomden nóg wat langer op zich zal laten wachten.

Van belang was ook deze quote, van de vertrekkende directeur, Tony Donné:

“Het oorspronkelijke plan was om in 2025 een ‘politiek plasma’ in de reactor te hebben: een heel kortstondig plasma om te laten zien dat de machine werkt, om daarna een nieuwe bouwfase in te gaan. De huidige ITER-directeur wil van start gaan met een plasma waar je daadwerkelijk experimenten mee kunt doen.”

Kortom, ja, de ingebruikname ITER wordt – weer – uitgesteld, en met meer dan, zeg, een jaar of twee. Dat is natuurlijk een tegenvaller. Maar men heeft ook besloten een stap over te slaan die eigenlijk alleen voor de bühne was (‘Kijk, hij doet het! Oké, zet maar weer uit dat ding.’). En daardoor schuift het moment waar het écht om gaat – een plasma dat meer energie opwekt dan nodig is om het te verhitten – veel minder op dan je op het eerste gezicht zou denken.

Categorieën
Natuurkunde Overige wetenschap Sterrenkunde

Van kernklokken tot kransslagaders

Soms lijkt het even alsof ik nauwelijks meer schrijf en ga ik aan mezelf twijfelen. Doe ik wel genoeg? En dan ploffen er ineens drie bladen tegelijk in de brievenbus met bijdragen van mij erin.

Categorieën
Natuurkunde Sterrenkunde

Bomen als neutrinodetectors?

Wil je neutrino’s meten, dan kom je er niet met een apparaat dat op je keukentafel past. Deze extreem lichte deeltjes zijn namelijk bizar moeilijk te ‘zien’. Het overgrote deel van de neutrino’s die de aarde uit het heelal bereiken, schiet ongehinderd door onze hele planeet heen.

Maar heel af en toe knalt zo’n neutrino op een atoomkern met een meetbaar signaaltje tot gevolg. En dus moet je neutrinodetector enorm zijn. Zodat ie zóveel atoomkernen bevat, dat er met enige regelmaat érgens een neutrinobotsing plaatsvindt.

En enorm, dat zijn neutrino-experimenten. Neem IceCube, dat met duizenden detectors een kubieke kilometer aan Zuidpoolijs in de gaten houdt. Of KM3NeT, dat een vergelijkbare hoeveelheid Middellandse Zee-water bestudeert.

Probleem is alleen: als we de zeldzaamste neutrino’s willen opmerken, is ook enorm niet meer groot genoeg. In een kubieke kilometer aan materie vindt dan gemiddeld maar één botsing per decennium plaats – en dat is wel erg karig.

Maar ja, er zit een grens aan hoeveel ijs of water je vol detectors kunt hangen voordat de kosten écht de pan uit rijzen. Daarom bedacht experimenteel astrodeeltjesfysicus Steven Prohira van de Universiteit van Kansas in de VS een eenvoudiger alternatief: gebruik bomen als neutrinodetectors.

Lees het hele artikel, eerder verschenen in KIJK 4/2024, nu op de KIJK-site.

Categorieën
Natuurkunde

Licht staat stil in kristal

Licht reist altijd met de lichtsnelheid, hoor je weleens – maar dat klopt niet. Licht beweegt bijvoorbeeld langzamer door water en nóg trager door glas. Nu is een team van onderzoeksinstituut AMOLF en de TU Delft, geleid door natuurkundige Ewold Verhagen, er zelfs in geslaagd licht helemáál stil te laten staan in een dun laagje kristal.

Lees het hele bericht op de KIJK-site.

Categorieën
Natuurkunde

Fysici raken ‘sweet spot’ van thorium

Een atoomklok is al zó precies, dat ie er na miljarden jaren maar een seconde naast zit. Toch kan het nog veel beter: door handig gebruik te maken van atoomkernen van het element thorium. Een team van Oostenrijkse en Duitse wetenschappers onder leiding van Thorsten Schumm (Technische Universiteit Wenen) heeft met een uitdagende meting een belangrijke stap richting zo’n ‘kernklok’ gezet. “Een heel grote doorbraak”, oordeelt Steven Hoekstra, hoogleraar atoom- en molecuulfysica aan de Rijksuniversiteit Groningen.

Lees het hele artikel op de site van Trouw of in de wetenschapsbijlage van de krant van vandaag.

Categorieën
Natuurkunde

Hoe maakt een kernreactor energie?

Energie kun je halen uit kolen, gas, zon, wind… en, in een kerncentrale, uit atoomkernen. Maar hoe werkt dat eigenlijk?

Om een kerncentrale te laten werken, heb je allereerst het zwaarste scheikundige element op aarde nodig: uranium. Zo’n uraniumatoom heeft in zijn binnenste een kern: een klont van deeltjes die we protonen en neutronen noemen.

In een kerncentrale laat je op zo’n uraniumkern een los neutron botsen. Daardoor valt die kern uit elkaar. Zo krijg je niet alleen twee kleinere atoomkernen, ook komt er energie bij vrij.

Lees de rest van mijn antwoord op deze vraag op nemo100jaar.nl.

Categorieën
Natuurkunde

Trouw-interview over kernfusie: de deleted scenes

Dit weekend op de wetenschapspagina’s van Trouw: mijn dubbelinterview met Tony Donné, vertrekkend hoofd van EUROfusion, en zijn opvolger Ambrogio Fasoli. Over hoe het ervoor staat met de internationale kernfusiereactor ITER, zijn opvolgers en zijn concurrenten.