Zoals een atoom waterstof bestaat uit een proton en een elektron, zo bestaat een atoom antiwaterstof uit een antiproton en een anti-elektron. Graag zouden natuurkundigen allerlei metingen aan zo’n antiwaterstofatoom verrichten, om te zien of het zich hetzelfde gedraagt als een gewoon waterstofatoom. Helaas is dat in de praktijk erg lastig. Als een antimateriedeeltje in contact komt met het corresponderende gewone deeltje, verdwijnen namelijk ze allebei.
Antiwaterstof is daarom geen lang leven beschoren, tenzij je het op de een of andere manier bij gewone materie uit de buurt weet te houden. Dat kan bijvoorbeeld met behulp van een antimaterieval, die gebruikmaakt van magnetische velden om antideeltjes in het luchtledige te laten hangen. Dat laatste lukt inmiddels heel aardig; afgelopen zomer meldden we dat het CERN-experiment ALPHA er met zo’n magnetische val in was geslaagd antiwaterstofatomen maar liefst zestien minuten te laten bestaan.
Nu laat hetzelfde team in Nature opnieuw van zich horen. De reden: het is de natuurkundigen gelukt om antiwaterstofatomen uit de val te laten zweven. Hoe? Door met microgolven de spin van het anti-elektron, die de waarde ‘op’ of ‘neer’ kan hebben, om te klappen naar de andere mogelijke waarde. Daardoor verandert het antiwaterstofatoom van een deeltje dat de plek opzoekt waar het magnetisch veld het zwakst is (oftewel: het midden van de val), in een deeltje dat juist beweegt naar waar dat veld het sterkst is (oftewel: de val uit).
Categorieën
Antiwaterstof uit val bevrijd
Tot voor kort was het al een hele klus om antiwaterstof langer dan een fractie van een seconde ‘in leven’ te houden. Maar nu lijkt het tijdperk aangebroken waarin we echt kunnen gaan experimenteren met dit soort deeltjes.