Gravitatiegolven van ‘te zware’ zwarte gaten gedetecteerd

Als een zware ster ‘overlijdt’, laat ie een zwart gat achter – en volgens onze huidige theorieën kunnen zulke gaten maximaal 45 keer zoveel wegen als onze zon. De twee LIGO-detectoren in de VS en de Europese detector Virgo bij Pisa in Italië hebben echter zwaartekrachtsgolven gezien, afkomstig van twee samensmeltende zwarte gaten met massa’s die daarboven liggen. De vraag is nu hoe zulke gaten hebben kunnen ontstaan.

Lees het hele stuk op de site van New Scientist Continue reading

Schuiven met pi om Einstein te testen

Als wetenschappers ergens zeker van zijn, is het wel dat de waarde van het getal pi overal en altijd hetzelfde is. Deel de omtrek van een cirkel door de diameter, en je krijgt 3,14159 – gevolgd door nog een oneindig lange rij cijfers achter de komma, waarvan er inmiddels enkele biljoenen zijn uitgerekend. Met dat in het achterhoofd klinkt het plan van natuurkundige Carl-Johan Haster in eerste instantie vrij onzinnig: laat pi variëren tussen -20 en 20, en kijk welke waarde het beste werkt.

Nu rekent Haster niet met omtrekken en diameters van cirkels, maar met zwaartekrachtsgolven. Oftewel: de trillingen in de ruimtetijd die volgens Einsteins algemene relativiteitstheorie bijvoorbeeld ontstaan als twee zwarte gaten samensmelten. Zo’n trilling laat zich namelijk omschrijven door een fikse formule die onder meer pi bevat. Door te kijken of de waarde van pi waarbij de formule de trilling het best omschrijft ook overeenkomt met de wiskundige waarde van pi, check je in feite of de relativiteitstheorie wel klopt. Stel immers dat een pi van, zeg, 14,75465 veel beter werkt dan eentje van 3,14159 – dan moet er wel iets mankeren aan die theorie.

Lees de nieuwe Far Out op de site van KIJK of in het net verschenen augustusnummer van het blad. (Overigens had die bladversie als oorspronkelijke kop mijn absolute dieptepunt als koppenbedenker: ‘Einstein op de pi-jnbank.’ Gelukkig had de redactie een beter idee.)

Is Planet Nine een zwart gat?

Alweer bijna vijftien jaar geleden werd Pluto gedegradeerd tot dwergplaneet, maar dat betekent niet dat ons zonnestelsel voor eeuwig slechts acht volwaardige planeten zal tellen. In 2016 meldden namelijk twee astronomen, Mike Brown en Konstantin Batygin, dat ze mogelijk tekenen hadden gezien van een nieuwe, negende planeet, die tot tien keer zo zwaar als de aarde zou zijn.

Maar inmiddels zijn we vier jaar verder en is niemand erin geslaagd Planet Nine daadwerkelijk met een telescoop in beeld te krijgen. Toch staat het bewijsmateriaal ervoor nog steeds overeind. Allerlei ruimterotsen in de buitenwijken van ons zonnestelsel bewegen op manieren die maar moeilijk te verklaren zijn – tenzij zich daar een zwaar object bevindt dat met zijn zwaartekracht invloed op zijn omgeving uitoefent.

Maar moet dat object dan per se een planeet zijn? Nee, zeggen de Britse natuurkundige Jakub Scholtz en zijn Amerikaanse collega James Unwin in een recent wetenschappelijk artikel. Zij stellen dat we ook met een zwart gat te maken zouden kunnen hebben.

Lees het hele artikel op de KIJK-site.

Hebben zwarte gaten inderdaad geen haar?

Gek genoeg nog niet hier vermeld, maar: sinds begin van de maand ben ik eindredacteur van de Nederlandse editie van New Scientist! Later misschien meer over mijn overstap, voor nu even een siteberichtje dat ik afgelopen week schreef:

Een zwart gat heeft geen haar, zo nemen natuurkundigen al decennia aan. Wat ze daarmee bedoelen: een zwart gat wordt getypeerd door slechts drie eigenschappen, namelijk zijn massa, zijn draaiing en zijn elektrische lading. Twee zwarte gaten die hetzelfde wegen, even snel in het rond bewegen en dezelfde lading hebben, zijn dus identiek. Het maakt niet uit hoe ze zijn ontstaan of wat ze in de loop der tijd naar binnen hebben getrokken. Natuurkundigen Matthew Giesler en Maximiliano Isi zijn er nu samen met anderen in geslaagd die stelling te testen.

Lees het hele bericht op de site van New Scientist!

Leuk om te merken dat een nieuwsbericht als dit behoorlijk goed scoort onder de bezoekers. Qua interesses heb ik dus in elk geval een boel met mijn nieuwe publiek gemeen.

Halo-drive: ruimteschepen versnellen met zwarte gaten

De grote makke van een ruimteschip versnellen is dat je er in de regel brandstof voor nodig hebt. Die moet je dus meenemen – wat je ruimteschip zwaarder maakt. Maar als je een zwaarder ruimteschip wilt versnellen, heb je meer brandstof nodig. Die je ook weer moet meenemen, waardoor je ruimteschip nog zwaarder wordt, enzovoort. Kortom: als je een beetje groot ruimteschip een beetje snel wilt laten gaan, kom je al gauw in de problemen. Tenzij je de benodigde energie niet uit meegebrachte brandstof haalt, maar uit  iets anders. David Kipping, astronoom aan de Columbia-universiteit in New York, heeft misschien wel de meest extreme vorm daarvan bedacht: een ruimteschip dat versnelt dankzij twee om elkaar heen bewegende zwarte gaten.

Lees de nieuwste aflevering van mijn rubriek ‘Far Out’ op de KIJK-site. Die overigens gemakkelijk te vullen blijft; gekke ideeën uit de natuur- en sterrenkunde genoeg. Maar leuke suggesties zijn altijd welkom, natuurlijk.

Telescopennetwerk brengt zwart gat in beeld

Je zou het bijna vergeten met alle plaatjes van zwarte gaten in sterrenkundeboeken en op websites, maar het was sterrenkundigen nog nooit gelukt daadwerkelijk een zwart gat te fotograferen. Dat wil zeggen: tot gisteren het onderstaande beeld werd vrijgegeven tijdens zes simultane persconferenties. De foto is het werk van de Event Horizon Telescope. Niet één telescoop, zoals de naam doet vermoeden, maar een samenwerking van acht radiotelescopen. Door hun data te combineren, konden ze fungeren als een virtuele telescoop ter grootte van de aarde; groot genoeg om een zwart gat waar te nemen.

Lees het hele bericht op de site van De Ingenieur.

Zwart gat in beeld gebracht door EHT

Tijdmachine werkt zonder exotische materie

We hebben allemaal weleens iets gezegd wat we achteraf veel liever voor ons hadden gehouden. Hoe geweldig zou het dan zijn als je even terug in de tijd kon gaan om jezelf net vóór het moment suprême vanachter een kamerplant toe te sissen: “Hou. Je. Mond!” Maar ja, gedane zaken nemen geen keer. We zullen moeten leren leven met alles wat we ooit hebben gezegd en gedaan. Of… is er toch nog een uitweg? Dat doet een recent artikel van drie Amerikaanse wetenschappers vermoeden, waarin ze een nieuw ontwerp voor een tijdmachine presenteren.

Lees het hele artikel op de KIJK-site.

Blijf je even oud op de rand van een zwart gat?

“Volgens de algemene relativiteitstheorie staat de tijd stil op de rand van een zwart gat”, schreef KIJK-lezer Ferdinand. “Betekent dit dan ook dat je daar niet ouder wordt?” Mijn eerder in het blad gepubliceerde antwoord op deze vraag lees je nu op de KIJK-site

Fantoomtijd en SKA in KIJK

Het blijft gek: nu ik niet meer bij KIJK in dienst ben, vul ik veel meer pagina’s van het blad dan toen dat wel nog het geval was. Case in point: voor het novembernummer schreef ik een artikel van zes pagina’s over de Square Kilometre Array (a.k.a. SKA) en een even lange aflevering in de reeks Complot! over de fantoomtijd (het idee dat een deel van de vroege middeleeuwen nooit is gebeurd).

KIJK 11/2018Daarnaast behandel ik in ‘Far Out’ de nieuwste claims rond de conformal cyclic cosmology, een theorie van Roger Penrose waarin ons heelal wordt voorafgegaan en gevolgd door een ander heelallen, en beantwoord ik de lezersvraag of neutrino’s door een zwart gat kunnen vliegen.

In totaal bijna vijftien pagina’s! Niet om mezelf op de borst te slaan (oké, wel), maar best een aardige score, naast een vaste baan van drie dagen in de week, een baby en freelanceklussen voor allerlei andere media. (Wat wel de productiviteit op het gebied van artikelen enorm helpt: geen boek schrijven.)

Hoe dan ook, KIJK 11/2018 ligt in de winkel voor 5,99 euro en is hier online te bestellen.

Is een wormgat een gratis superdeeltjesversneller?

27 kilometer: dat is de omtrek van ’s werelds grootste deeltjesversneller, de LHC bij Genève. En hoewel deze megamachine nog lang niet met pensioen gaat, dromen deeltjesfysici al van een nog grotere versneller, met een omtrek van 80 tot 100 kilometer. Want: hoe groter je versneller, hoe hoger de energie waarmee je deeltjes in zo’n versneller op elkaar kunt laten botsen. En hoe hoger die botsingsenergie, hoe meer je mag hopen op nieuwe deeltjes of natuurkundige verschijnselen.

Eén energie heeft daarbij onder fysici een haast mythische status: de zogenoemde planckenergie. Bij die energie, die naar deeltjesbegrippen onvoorstelbaar hoog is, kunnen bijvoorbeeld microscopisch kleine zwarte gaten uit het niets tevoorschijn ploppen. Ook kunnen er verschijnselen optreden die ons vertellen hoe we de zwaartekracht en de andere krachten die ons heelal bestieren, kunnen onderbrengen in één theorie; iets waar wetenschappers al decennialang naar op zoek zijn.

Probleem is alleen: als je met een LHC-achtige deeltjesversneller de planckenergie wilt bereiken, zal dat apparaat zo groot als ons hele zonnestelsel moeten worden. Onnodig te zeggen dat zo’n bouwproject voorlopig buiten bereik van de mensheid ligt.

Zullen we dus nog eeuwen moeten wachten voordat we de planckenergie kunnen verkennen? Niet per se, zegt de Russische natuurkundige Serguei Krasnikov. Hij denkt dat zulke versnellers misschien wel gratis en voor niets in het heelal te vinden zijn – in de vorm van wormgaten.

Lees de nieuwste aflevering van mijn rubriek Far Out, over speculatieve natuur- en sterrenkunde, op de KIJK-site.